Copied to
clipboard

G = C7×C33⋊C2order 378 = 2·33·7

Direct product of C7 and C33⋊C2

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C7×C33⋊C2, C333C14, (C3×C21)⋊9S3, C213(C3⋊S3), C324(S3×C7), (C32×C21)⋊7C2, C3⋊(C7×C3⋊S3), SmallGroup(378,58)

Series: Derived Chief Lower central Upper central

C1C33 — C7×C33⋊C2
C1C3C32C33C32×C21 — C7×C33⋊C2
C33 — C7×C33⋊C2
C1C7

Generators and relations for C7×C33⋊C2
 G = < a,b,c,d,e | a7=b3=c3=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe=b-1, cd=dc, ece=c-1, ede=d-1 >

Subgroups: 424 in 112 conjugacy classes, 58 normal (6 characteristic)
C1, C2, C3, S3, C7, C32, C14, C3⋊S3, C21, C33, S3×C7, C33⋊C2, C3×C21, C7×C3⋊S3, C32×C21, C7×C33⋊C2
Quotients: C1, C2, S3, C7, C14, C3⋊S3, S3×C7, C33⋊C2, C7×C3⋊S3, C7×C33⋊C2

Smallest permutation representation of C7×C33⋊C2
On 189 points
Generators in S189
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)(169 170 171 172 173 174 175)(176 177 178 179 180 181 182)(183 184 185 186 187 188 189)
(1 80 171)(2 81 172)(3 82 173)(4 83 174)(5 84 175)(6 78 169)(7 79 170)(8 30 180)(9 31 181)(10 32 182)(11 33 176)(12 34 177)(13 35 178)(14 29 179)(15 40 167)(16 41 168)(17 42 162)(18 36 163)(19 37 164)(20 38 165)(21 39 166)(22 127 98)(23 128 92)(24 129 93)(25 130 94)(26 131 95)(27 132 96)(28 133 97)(43 67 134)(44 68 135)(45 69 136)(46 70 137)(47 64 138)(48 65 139)(49 66 140)(50 100 145)(51 101 146)(52 102 147)(53 103 141)(54 104 142)(55 105 143)(56 99 144)(57 155 126)(58 156 120)(59 157 121)(60 158 122)(61 159 123)(62 160 124)(63 161 125)(71 116 108)(72 117 109)(73 118 110)(74 119 111)(75 113 112)(76 114 106)(77 115 107)(85 185 149)(86 186 150)(87 187 151)(88 188 152)(89 189 153)(90 183 154)(91 184 148)
(1 61 44)(2 62 45)(3 63 46)(4 57 47)(5 58 48)(6 59 49)(7 60 43)(8 27 107)(9 28 108)(10 22 109)(11 23 110)(12 24 111)(13 25 112)(14 26 106)(15 147 185)(16 141 186)(17 142 187)(18 143 188)(19 144 189)(20 145 183)(21 146 184)(29 131 76)(30 132 77)(31 133 71)(32 127 72)(33 128 73)(34 129 74)(35 130 75)(36 55 152)(37 56 153)(38 50 154)(39 51 148)(40 52 149)(41 53 150)(42 54 151)(64 83 155)(65 84 156)(66 78 157)(67 79 158)(68 80 159)(69 81 160)(70 82 161)(85 167 102)(86 168 103)(87 162 104)(88 163 105)(89 164 99)(90 165 100)(91 166 101)(92 118 176)(93 119 177)(94 113 178)(95 114 179)(96 115 180)(97 116 181)(98 117 182)(120 139 175)(121 140 169)(122 134 170)(123 135 171)(124 136 172)(125 137 173)(126 138 174)
(1 151 96)(2 152 97)(3 153 98)(4 154 92)(5 148 93)(6 149 94)(7 150 95)(8 68 104)(9 69 105)(10 70 99)(11 64 100)(12 65 101)(13 66 102)(14 67 103)(15 75 121)(16 76 122)(17 77 123)(18 71 124)(19 72 125)(20 73 126)(21 74 120)(22 82 89)(23 83 90)(24 84 91)(25 78 85)(26 79 86)(27 80 87)(28 81 88)(29 134 141)(30 135 142)(31 136 143)(32 137 144)(33 138 145)(34 139 146)(35 140 147)(36 116 62)(37 117 63)(38 118 57)(39 119 58)(40 113 59)(41 114 60)(42 115 61)(43 53 179)(44 54 180)(45 55 181)(46 56 182)(47 50 176)(48 51 177)(49 52 178)(106 158 168)(107 159 162)(108 160 163)(109 161 164)(110 155 165)(111 156 166)(112 157 167)(127 173 189)(128 174 183)(129 175 184)(130 169 185)(131 170 186)(132 171 187)(133 172 188)
(8 17)(9 18)(10 19)(11 20)(12 21)(13 15)(14 16)(22 189)(23 183)(24 184)(25 185)(26 186)(27 187)(28 188)(29 168)(30 162)(31 163)(32 164)(33 165)(34 166)(35 167)(36 181)(37 182)(38 176)(39 177)(40 178)(41 179)(42 180)(43 60)(44 61)(45 62)(46 63)(47 57)(48 58)(49 59)(50 118)(51 119)(52 113)(53 114)(54 115)(55 116)(56 117)(64 126)(65 120)(66 121)(67 122)(68 123)(69 124)(70 125)(71 105)(72 99)(73 100)(74 101)(75 102)(76 103)(77 104)(78 169)(79 170)(80 171)(81 172)(82 173)(83 174)(84 175)(85 130)(86 131)(87 132)(88 133)(89 127)(90 128)(91 129)(92 154)(93 148)(94 149)(95 150)(96 151)(97 152)(98 153)(106 141)(107 142)(108 143)(109 144)(110 145)(111 146)(112 147)(134 158)(135 159)(136 160)(137 161)(138 155)(139 156)(140 157)

G:=sub<Sym(189)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189), (1,80,171)(2,81,172)(3,82,173)(4,83,174)(5,84,175)(6,78,169)(7,79,170)(8,30,180)(9,31,181)(10,32,182)(11,33,176)(12,34,177)(13,35,178)(14,29,179)(15,40,167)(16,41,168)(17,42,162)(18,36,163)(19,37,164)(20,38,165)(21,39,166)(22,127,98)(23,128,92)(24,129,93)(25,130,94)(26,131,95)(27,132,96)(28,133,97)(43,67,134)(44,68,135)(45,69,136)(46,70,137)(47,64,138)(48,65,139)(49,66,140)(50,100,145)(51,101,146)(52,102,147)(53,103,141)(54,104,142)(55,105,143)(56,99,144)(57,155,126)(58,156,120)(59,157,121)(60,158,122)(61,159,123)(62,160,124)(63,161,125)(71,116,108)(72,117,109)(73,118,110)(74,119,111)(75,113,112)(76,114,106)(77,115,107)(85,185,149)(86,186,150)(87,187,151)(88,188,152)(89,189,153)(90,183,154)(91,184,148), (1,61,44)(2,62,45)(3,63,46)(4,57,47)(5,58,48)(6,59,49)(7,60,43)(8,27,107)(9,28,108)(10,22,109)(11,23,110)(12,24,111)(13,25,112)(14,26,106)(15,147,185)(16,141,186)(17,142,187)(18,143,188)(19,144,189)(20,145,183)(21,146,184)(29,131,76)(30,132,77)(31,133,71)(32,127,72)(33,128,73)(34,129,74)(35,130,75)(36,55,152)(37,56,153)(38,50,154)(39,51,148)(40,52,149)(41,53,150)(42,54,151)(64,83,155)(65,84,156)(66,78,157)(67,79,158)(68,80,159)(69,81,160)(70,82,161)(85,167,102)(86,168,103)(87,162,104)(88,163,105)(89,164,99)(90,165,100)(91,166,101)(92,118,176)(93,119,177)(94,113,178)(95,114,179)(96,115,180)(97,116,181)(98,117,182)(120,139,175)(121,140,169)(122,134,170)(123,135,171)(124,136,172)(125,137,173)(126,138,174), (1,151,96)(2,152,97)(3,153,98)(4,154,92)(5,148,93)(6,149,94)(7,150,95)(8,68,104)(9,69,105)(10,70,99)(11,64,100)(12,65,101)(13,66,102)(14,67,103)(15,75,121)(16,76,122)(17,77,123)(18,71,124)(19,72,125)(20,73,126)(21,74,120)(22,82,89)(23,83,90)(24,84,91)(25,78,85)(26,79,86)(27,80,87)(28,81,88)(29,134,141)(30,135,142)(31,136,143)(32,137,144)(33,138,145)(34,139,146)(35,140,147)(36,116,62)(37,117,63)(38,118,57)(39,119,58)(40,113,59)(41,114,60)(42,115,61)(43,53,179)(44,54,180)(45,55,181)(46,56,182)(47,50,176)(48,51,177)(49,52,178)(106,158,168)(107,159,162)(108,160,163)(109,161,164)(110,155,165)(111,156,166)(112,157,167)(127,173,189)(128,174,183)(129,175,184)(130,169,185)(131,170,186)(132,171,187)(133,172,188), (8,17)(9,18)(10,19)(11,20)(12,21)(13,15)(14,16)(22,189)(23,183)(24,184)(25,185)(26,186)(27,187)(28,188)(29,168)(30,162)(31,163)(32,164)(33,165)(34,166)(35,167)(36,181)(37,182)(38,176)(39,177)(40,178)(41,179)(42,180)(43,60)(44,61)(45,62)(46,63)(47,57)(48,58)(49,59)(50,118)(51,119)(52,113)(53,114)(54,115)(55,116)(56,117)(64,126)(65,120)(66,121)(67,122)(68,123)(69,124)(70,125)(71,105)(72,99)(73,100)(74,101)(75,102)(76,103)(77,104)(78,169)(79,170)(80,171)(81,172)(82,173)(83,174)(84,175)(85,130)(86,131)(87,132)(88,133)(89,127)(90,128)(91,129)(92,154)(93,148)(94,149)(95,150)(96,151)(97,152)(98,153)(106,141)(107,142)(108,143)(109,144)(110,145)(111,146)(112,147)(134,158)(135,159)(136,160)(137,161)(138,155)(139,156)(140,157)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189), (1,80,171)(2,81,172)(3,82,173)(4,83,174)(5,84,175)(6,78,169)(7,79,170)(8,30,180)(9,31,181)(10,32,182)(11,33,176)(12,34,177)(13,35,178)(14,29,179)(15,40,167)(16,41,168)(17,42,162)(18,36,163)(19,37,164)(20,38,165)(21,39,166)(22,127,98)(23,128,92)(24,129,93)(25,130,94)(26,131,95)(27,132,96)(28,133,97)(43,67,134)(44,68,135)(45,69,136)(46,70,137)(47,64,138)(48,65,139)(49,66,140)(50,100,145)(51,101,146)(52,102,147)(53,103,141)(54,104,142)(55,105,143)(56,99,144)(57,155,126)(58,156,120)(59,157,121)(60,158,122)(61,159,123)(62,160,124)(63,161,125)(71,116,108)(72,117,109)(73,118,110)(74,119,111)(75,113,112)(76,114,106)(77,115,107)(85,185,149)(86,186,150)(87,187,151)(88,188,152)(89,189,153)(90,183,154)(91,184,148), (1,61,44)(2,62,45)(3,63,46)(4,57,47)(5,58,48)(6,59,49)(7,60,43)(8,27,107)(9,28,108)(10,22,109)(11,23,110)(12,24,111)(13,25,112)(14,26,106)(15,147,185)(16,141,186)(17,142,187)(18,143,188)(19,144,189)(20,145,183)(21,146,184)(29,131,76)(30,132,77)(31,133,71)(32,127,72)(33,128,73)(34,129,74)(35,130,75)(36,55,152)(37,56,153)(38,50,154)(39,51,148)(40,52,149)(41,53,150)(42,54,151)(64,83,155)(65,84,156)(66,78,157)(67,79,158)(68,80,159)(69,81,160)(70,82,161)(85,167,102)(86,168,103)(87,162,104)(88,163,105)(89,164,99)(90,165,100)(91,166,101)(92,118,176)(93,119,177)(94,113,178)(95,114,179)(96,115,180)(97,116,181)(98,117,182)(120,139,175)(121,140,169)(122,134,170)(123,135,171)(124,136,172)(125,137,173)(126,138,174), (1,151,96)(2,152,97)(3,153,98)(4,154,92)(5,148,93)(6,149,94)(7,150,95)(8,68,104)(9,69,105)(10,70,99)(11,64,100)(12,65,101)(13,66,102)(14,67,103)(15,75,121)(16,76,122)(17,77,123)(18,71,124)(19,72,125)(20,73,126)(21,74,120)(22,82,89)(23,83,90)(24,84,91)(25,78,85)(26,79,86)(27,80,87)(28,81,88)(29,134,141)(30,135,142)(31,136,143)(32,137,144)(33,138,145)(34,139,146)(35,140,147)(36,116,62)(37,117,63)(38,118,57)(39,119,58)(40,113,59)(41,114,60)(42,115,61)(43,53,179)(44,54,180)(45,55,181)(46,56,182)(47,50,176)(48,51,177)(49,52,178)(106,158,168)(107,159,162)(108,160,163)(109,161,164)(110,155,165)(111,156,166)(112,157,167)(127,173,189)(128,174,183)(129,175,184)(130,169,185)(131,170,186)(132,171,187)(133,172,188), (8,17)(9,18)(10,19)(11,20)(12,21)(13,15)(14,16)(22,189)(23,183)(24,184)(25,185)(26,186)(27,187)(28,188)(29,168)(30,162)(31,163)(32,164)(33,165)(34,166)(35,167)(36,181)(37,182)(38,176)(39,177)(40,178)(41,179)(42,180)(43,60)(44,61)(45,62)(46,63)(47,57)(48,58)(49,59)(50,118)(51,119)(52,113)(53,114)(54,115)(55,116)(56,117)(64,126)(65,120)(66,121)(67,122)(68,123)(69,124)(70,125)(71,105)(72,99)(73,100)(74,101)(75,102)(76,103)(77,104)(78,169)(79,170)(80,171)(81,172)(82,173)(83,174)(84,175)(85,130)(86,131)(87,132)(88,133)(89,127)(90,128)(91,129)(92,154)(93,148)(94,149)(95,150)(96,151)(97,152)(98,153)(106,141)(107,142)(108,143)(109,144)(110,145)(111,146)(112,147)(134,158)(135,159)(136,160)(137,161)(138,155)(139,156)(140,157) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168),(169,170,171,172,173,174,175),(176,177,178,179,180,181,182),(183,184,185,186,187,188,189)], [(1,80,171),(2,81,172),(3,82,173),(4,83,174),(5,84,175),(6,78,169),(7,79,170),(8,30,180),(9,31,181),(10,32,182),(11,33,176),(12,34,177),(13,35,178),(14,29,179),(15,40,167),(16,41,168),(17,42,162),(18,36,163),(19,37,164),(20,38,165),(21,39,166),(22,127,98),(23,128,92),(24,129,93),(25,130,94),(26,131,95),(27,132,96),(28,133,97),(43,67,134),(44,68,135),(45,69,136),(46,70,137),(47,64,138),(48,65,139),(49,66,140),(50,100,145),(51,101,146),(52,102,147),(53,103,141),(54,104,142),(55,105,143),(56,99,144),(57,155,126),(58,156,120),(59,157,121),(60,158,122),(61,159,123),(62,160,124),(63,161,125),(71,116,108),(72,117,109),(73,118,110),(74,119,111),(75,113,112),(76,114,106),(77,115,107),(85,185,149),(86,186,150),(87,187,151),(88,188,152),(89,189,153),(90,183,154),(91,184,148)], [(1,61,44),(2,62,45),(3,63,46),(4,57,47),(5,58,48),(6,59,49),(7,60,43),(8,27,107),(9,28,108),(10,22,109),(11,23,110),(12,24,111),(13,25,112),(14,26,106),(15,147,185),(16,141,186),(17,142,187),(18,143,188),(19,144,189),(20,145,183),(21,146,184),(29,131,76),(30,132,77),(31,133,71),(32,127,72),(33,128,73),(34,129,74),(35,130,75),(36,55,152),(37,56,153),(38,50,154),(39,51,148),(40,52,149),(41,53,150),(42,54,151),(64,83,155),(65,84,156),(66,78,157),(67,79,158),(68,80,159),(69,81,160),(70,82,161),(85,167,102),(86,168,103),(87,162,104),(88,163,105),(89,164,99),(90,165,100),(91,166,101),(92,118,176),(93,119,177),(94,113,178),(95,114,179),(96,115,180),(97,116,181),(98,117,182),(120,139,175),(121,140,169),(122,134,170),(123,135,171),(124,136,172),(125,137,173),(126,138,174)], [(1,151,96),(2,152,97),(3,153,98),(4,154,92),(5,148,93),(6,149,94),(7,150,95),(8,68,104),(9,69,105),(10,70,99),(11,64,100),(12,65,101),(13,66,102),(14,67,103),(15,75,121),(16,76,122),(17,77,123),(18,71,124),(19,72,125),(20,73,126),(21,74,120),(22,82,89),(23,83,90),(24,84,91),(25,78,85),(26,79,86),(27,80,87),(28,81,88),(29,134,141),(30,135,142),(31,136,143),(32,137,144),(33,138,145),(34,139,146),(35,140,147),(36,116,62),(37,117,63),(38,118,57),(39,119,58),(40,113,59),(41,114,60),(42,115,61),(43,53,179),(44,54,180),(45,55,181),(46,56,182),(47,50,176),(48,51,177),(49,52,178),(106,158,168),(107,159,162),(108,160,163),(109,161,164),(110,155,165),(111,156,166),(112,157,167),(127,173,189),(128,174,183),(129,175,184),(130,169,185),(131,170,186),(132,171,187),(133,172,188)], [(8,17),(9,18),(10,19),(11,20),(12,21),(13,15),(14,16),(22,189),(23,183),(24,184),(25,185),(26,186),(27,187),(28,188),(29,168),(30,162),(31,163),(32,164),(33,165),(34,166),(35,167),(36,181),(37,182),(38,176),(39,177),(40,178),(41,179),(42,180),(43,60),(44,61),(45,62),(46,63),(47,57),(48,58),(49,59),(50,118),(51,119),(52,113),(53,114),(54,115),(55,116),(56,117),(64,126),(65,120),(66,121),(67,122),(68,123),(69,124),(70,125),(71,105),(72,99),(73,100),(74,101),(75,102),(76,103),(77,104),(78,169),(79,170),(80,171),(81,172),(82,173),(83,174),(84,175),(85,130),(86,131),(87,132),(88,133),(89,127),(90,128),(91,129),(92,154),(93,148),(94,149),(95,150),(96,151),(97,152),(98,153),(106,141),(107,142),(108,143),(109,144),(110,145),(111,146),(112,147),(134,158),(135,159),(136,160),(137,161),(138,155),(139,156),(140,157)]])

105 conjugacy classes

class 1  2 3A···3M7A···7F14A···14F21A···21BZ
order123···37···714···1421···21
size1272···21···127···272···2

105 irreducible representations

dim111122
type+++
imageC1C2C7C14S3S3×C7
kernelC7×C33⋊C2C32×C21C33⋊C2C33C3×C21C32
# reps11661378

Matrix representation of C7×C33⋊C2 in GL6(𝔽43)

400000
040000
0021000
0002100
0000350
0000035
,
4210000
4200000
0041300
0042100
0000042
0000142
,
4210000
4200000
0041300
0042100
000010
000001
,
4210000
4200000
001000
000100
0000421
0000420
,
0420000
4200000
0042300
000100
000001
000010

G:=sub<GL(6,GF(43))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,21,0,0,0,0,0,0,21,0,0,0,0,0,0,35,0,0,0,0,0,0,35],[42,42,0,0,0,0,1,0,0,0,0,0,0,0,41,42,0,0,0,0,3,1,0,0,0,0,0,0,0,1,0,0,0,0,42,42],[42,42,0,0,0,0,1,0,0,0,0,0,0,0,41,42,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[42,42,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,42,42,0,0,0,0,1,0],[0,42,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,3,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C7×C33⋊C2 in GAP, Magma, Sage, TeX

C_7\times C_3^3\rtimes C_2
% in TeX

G:=Group("C7xC3^3:C2");
// GroupNames label

G:=SmallGroup(378,58);
// by ID

G=gap.SmallGroup(378,58);
# by ID

G:=PCGroup([5,-2,-7,-3,-3,-3,422,1683,6304]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^3=c^3=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽